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ABSTRACT

The efficient constructionof simplified modelsis a centralprob-
lem in the field of visualization.We combinetopologicalandge-
ometricmethodsto constructa multi-resolutiondatastructurefor
functionsover two-dimensionaldomains.Startingwith theMorse-
Smalecomplex we build a hierarchyby progressively canceling
critical pointsin pairs. Thedatastructuresupportsmeshtraversal
operationssimilar to traditionalmulti-resolutionrepresentations.

Keywords: Critical point theory, Morse-Smalecomplexes, ter-
rains,simplification,multi-resolutiondatastructure.

1 INTRODUCTION

This paperdescribesa multi-resolutiondatastructurerepresenting
acontinuousfunctionoveratwo-dimensionaldomain.An example
of suchdatais a terrainover a pieceof theplaneor over a sphere
(e.g.theEarth). Thedistinguishingfeatureof this datastructureis
the fusion of topologicalandgeometricmeasurementsdriving its
construction.

Motiv ation Scientific data typically consistsof measurements
over ageometricdomainor space.Wethink of it asadiscretesam-
ple of a continuousfunction over the space.In this paperwe are
interestedin thecasein which thespaceis a compact2-manifold.
Examplesarethesphereandthe torus,andeitheroneof themcan
be obtainedby compactifyinga simply connectedopenregion of
theplane.

A multi-resolutionrepresentationis crucial in the efficient and
preferablyinteractive explorationof scientificdata.Thetraditional
approachto constructingsucharepresentationis basedonprogres-
sive datasimplificationdrivenby a numericalmeasurementof the
error. Alternatively, we may drive the simplificationprocesswith
measurementsof thetopologicalfeaturesin thedata.Wereferto the
formerasthegeometric andthe latterasthe topological approach
to multi-resolutionrepresentations.The latter approachis appro-
priateif the topologicalfeaturesandtheir spatialrelationshipsare
essentialto understandthephenomenaunderinvestigation.An ex-
ampleis waterflow over a terrain,which is influencedby possibly
subtleslopes.Smallbut critical changesin thelandscapemayresult
in catastrophicchangesin waterflow andaccumulation.Thereare
applicationsbeyond the analysisof measureddata. For example,
wemayartificially createacontinuousfunctionoverasurface(e.g.
describingacar-body)andusethatfunctionto guidethesegmenta-
tion of thesurfaceinto patches.

Related work The topological analysisof scientific data has
beena long standingresearchfocus. Morse theory relatedmeth-
odswerealreadydevelopedin thelate19thcentury[Cayley 1859;

Maxwell 1870] and later even hierarchicalrepresentationswere
proposed[Pfaltz 1976; Pfaltz 1979]. However, most of this re-
searchwaslostandhasbeenrediscoveredonly recently. Mostmod-
ern researchin the areaof multi-resolutionstructuresis geometry
andmany techniqueshave beendevelopedduring the last decade.
Themostsuccessfulalgorithmsdevelopedin thateraarebasedon
edgecontractionasthefundamentalsimplifying operation[Hoppe
1996;Popovic andHoppe1997]andaccumulatedsquaredistances
to planeconstraintsas the error measure[Garlandand Heckbert
1997; Lindstrom and Turk 1998]. This work focussedon trian-
gulatedsurfacesembeddedin three-dimensionalEuclideanspace,
which we denoteas �{� . We find a similar focusin thesuccessive
attemptsto includethecapabilityto changethetopologicaltypeof
thesurface[El-SanaandVarshney 1998;He et al. 1996]. If we in-
terpretthesurfaceasthezero-setof a continuousfunctionover �{�
we mayinterpretsuchoperationsassmoothingor simplifying this
function.This pointof view is takenin asequenceof recentpapers
on thetopic [GerstnerandPajarola2000;Guskov andWood2001;
Juetal. 2002],but thesimplificationis limited to asmallneighbor-
hoodof thezeroset. In this paperwe widen the focusto thesim-
plification of the entire function, which is equivalent to removing
spurioustopologicalfeaturesfrom all level setssimultaneously. To
obtaina mathematicalformulationof this process,we interpretthe
critical pointsof thefunctionastheculpritsresponsiblefor topolog-
ical featuresthatappearin thelevel sets[Bajaj andSchikore1998;
Fomenko andKunii 1997]. While sweepingthroughthe level sets
we seethat critical points indeedstartandendsuchfeatures,and
wemayusethelengthof theinterval over whicha featureexistsas
ameasureof its importance[Edelsbrunneretal. 2002].Wereferto
this measureasthepersistence of thetwo critical pointsdelimiting
theinterval. In thisview, theMorse-Smalecomplex of thefunction
domainoccupiesacentralposition.Its constructionandsimplifica-
tion is studiedfor 2-manifoldsin [Edelsbrunneretal. 2002]andfor
3-manifoldsin [Edelsbrunneret al. 2003].

Results In this paperwe follow the approachtaken in [Edels-
brunneret al. 2002],with somecrucialdifferencesandextensions.
Given a piecewise linear continuousfunction over a triangulated
2-manifold,we

1. constructa decompositionof the 2-manifoldinto monotonic
quadrangularregionsby connectingcritical pointswith lines
of steepestdescent;

2. simplify thedecompositionby performingasequenceof can-
cellationsorderedby persistence;and

3. turn the simplification processinto a hierarchical multi-
resolutiondatastructurewhoselevels correspondto simpli-
fiedversionsof thefunction.

The first two stepshave beendiscussedin [Edelsbrunneret al.
2002], but the third stepis new. Nevertheless,we have original
contributions in all threestepsand in the applicationof the data
structureto concretescientificproblems.Thesecontributionsare



(i) a modificationof thealgorithmof [Edelsbrunneret al. 2002]
that constructsthe Morse-Smalecomplex without the useof
handleslides;

(ii) thesimplificationof thecomplex by simultaneousapplication
of independentcancellations;

(iii) a numericalalgorithmto constructgeometricrealizationsof
themonotonicpatchesin thegraphof thesimplifiedfunction;

(iv) alow depthmulti-resolutiondatastructurecombiningthesim-
plified versionsof thefunctioninto a singlehierarchy;

(v) an algorithm for traversingthe datastructurethat combines
differentlevelsof thehierarchyto constructadaptive simpli-
ficationsof thefunction;and

(vi) the applicationof our softwareto variousscientificdatasets
andthevisualizationof theresults.

Thehallmarkof ourmethodis thefusionof thegeometricandtopo-
logical approachesto multi-resolutionrepresentations.The entire
processis controlledby topologicalconsiderations,and the geo-
metricmethodis usedto realizemonotonicpathsandpatches.The
latterplaysacrucialbut sub-ordinaterole in theoverall algorithm.

2 BACKGROUND

Wedesignessentiallycombinatorialalgorithmsbasedon intuitions
providedby investigationsof smoothmaps.In this section,we de-
scribethenecessarybackground,first in Morsetheory[Matsumoto
2002]andsecondin combinatorialtopology[Alx eandrov 1998].

Morse functions. Throughoutthispaper, � denotesacompact
2-manifoldwithoutboundaryand �_�%����� denotesareal-valued
smoothfunctionover � . Assuminga local coordinatesystemat a
point �D�0� , we take two partialderivatives, �%��]�]�

� �b� and �%��]�P�
� �b� .

Thepoint � is critical if bothpartialderivativesarezeroandregular
otherwise.Examplesof critical pointsaremaxima( � decreasesin
all directions),minima ( � increasesin all directions),andsaddles
( � switchesbetweendecreasingandincreasingfour timesaround
thepoint).

Usingagainthelocal coordinatesat � , we computetheHessian,

which is the matrix of secondpartial derivatives � � ��%�P ¡�]�m¢
� �b� , for£�¤a¥§¦�¨`¤ª©

. A critical point is non-degenerate if the Hessian
is non-singular, which is a propertythat is independentof the co-
ordinatesystem. According to the Morse Lemma, it is possible
to constructa local coordinatesystemsuchthat � takes the form� �¡«Y¬ ¦ «�­ �7®¯� � �b��° «

­ ¬ ° «
­­

in aneighborhoodof anon-degenerate
critical point. Thenumberof minussignsis the index of � anddis-
tinguishesthedifferenttypesof critical points:minimahave index
0, saddleshave index 1, andmaximahave index 2. Technically, �
is a Morse function if all its critical pointsarenon-degenerateand
havepairwisedifferentfunctionvalues.Muchof thetechnicalchal-
lengein ourwork is rootedin theneedto simulatetheseconditions
for functionsthatdo notsatisfythemin a literal sense.

Morse-Smale comple xes. Assuminganorthonormallocalco-
ordinate system, the gradient at a point � of the manifold is± � � �b�7®p² �%��]�]�

� ��� ¦ ����]�P�
� �b�E³µ´ . Thesetof gradientsformsasmooth

vectorfield on � , with zeroesat the critical pointsof � . At any
regular point we have a non-zerogradientvector, and if we fol-
low thatvectorwe traceout an integral line, which startsat a criti-
cal point andendsat a critical point while not containingeitherof
them.Sinceintegral linesascendmonotonically, thetwo endpoints
cannotbethesame.Because� is smooth,two integral linesareei-
therdisjoint or thesame.Thesetof integral linescoverstheentire
manifold,exceptfor thecritical points.

Thedescending manifold of a critical point � is thesetof points
thatflow toward � . More formally, it is thepoint � unionall inte-
gral linesthatendat � . For example,thedescendingmanifoldof a
maximumis anopendisk, thatof a saddleis anopeninterval, and
thatof a minimumis theminimumitself. Thecollectionof stable
manifoldsis a complex, in thesensethat theboundaryof a cell is
theunionof lower-dimensionalcells.Symmetrically, wedefinethe
ascending manifold of � asthepoint � unionall integral linesthat
startat � .

For the next definition, we needan additionalnon-degeneracy
condition,namelythat if ascendinganddescendingmanifoldsin-
tersectthenthey dothattransversally. For example,if anascending
1-manifoldintersectsadescending1-manifoldthenthey cross.Be-
causeof thedisjointnessof integral lines, this implies thecrossing
is a singlepoint, namelythe saddlecommonto both. Assuming
this transversalityproperty, we overlaythe two complexesandob-
tain whatwe call theMorse-Smale complex, or MS complex, of � .
Its cellsaretheconnectedcomponentsof theintersectionsbetween
ascendinganddescendingmanifolds.Its verticesaretheverticesof
the two overlayedcomplexes,which are the minima andmaxima
of � , togetherwith thecrossingpointsof ascendinganddescending
1-manifolds,which arethesaddlesof � . Each1-manifoldis split
at its saddle,thuscontributing two arcsto the Morse-Smalecom-
plex. Eachsaddleis endpointof four arcs,whichalternatelyascend
anddescendaroundthesaddle.Finally, eachregion hasfour sides,
namelytwo arcsemanatingfrom aminimumandendingattwo sad-
dlesandto additionalarcscontinuingfrom thesaddlesto acommon
maximum.

Piecewise linear functions. Functionsareabundantin scien-
tific problems,but they arerarely smoothandmostly known only
at a finite setof pointsspreadout over the manifold. It is conve-
nient to assumethe function is pairwisedifferentat thesepoints.
We assumethe pointsarethe verticesof a triangulation ¶ of � ,
andweextendthefunctionvaluesby piecewiselinearinterpolation
over theedgesandtrianglesof ¶ . Thestar ·�¸�¹ of a vertex ¹ con-
sistsof all simplices(vertices,edgesandtriangles)thatcontain ¹ ,
andthelink º�» � ¹�� consistsof all facesof simplicesin thestarthat
aredisjoint from ¹ . Since ¶ triangulatesa 2-manifold,the link of
everyvertex is atopologicalcircle. Thelower star containsall sim-
plicesin thestarfor which ¹ is thehighestvertex, andthelower link
containsall simplicesin thelink whoseendpointsarelower than ¹ .
Notethatthelower link is thesubsetof simplicesin thelink thatare
facesof simplicesin thelower star. Topologically, thelower link is
asubsetof acircle. Wedefinewhatwemeanby acritical pointof a
piecewise linearfunctionbasedon thelower link. As illustratedin
Figure1, thelower link of a maximum is theentirelink andthatof
a minimum is empty. In all othercases,thelower link of ¹ consists

minimum saddle maximum splitting of 2−fold saddleregular point

Figure1: Theclassificationof a vertex basedon therelative height
of theverticesin its link. Thelower link is markedblack.

of ¼u½ £�¾�£
connectedpieces,eachbeingan arc or possiblya

singlevertex. Thevertex ¹ is regular if ¼o®À¿ anda ¼ -fold saddle
if ¼ ¾Á£

. As illustratedin Figure1 for ¼f® ©
, a ¼ -fold saddlecan

besplit into ¼ simpleor 1-fold saddles.

Persistence We needa numericalmeasureof the importance
of a critical point thatdrivesthesimplificationof anMS complex.



Following the ideasdescribedin [Edelsbrunneret al. 2002] criti-
cal pointscanonly be removed in pairs (they canceleachother).
The persistence of a cancellationis definedasthe absolutediffer-
encein functionvaluebetweenthetwo critical pointsinvolved.The
persistenceis alsodirectly relatedto thegeometricalerror(errorin
functionspace)aswill beexplainedin Section5.

3 MORSE-SMALE COMPLEX

We introducean algorithmfor computingthe MS complex of the
function � definedover thetriangulation¶ . In particular, we com-
pute the ascending/descending1-manifolds(paths) of � starting
from the saddles,andusethem to partition ¶ into quadrangular
regions.

Construction of 1-manif olds Startingfrom eachsaddle,we
constructtwo linesof steepestascentandtwo linesof steepestde-
scent.We do not adopttheoriginal algorithmproposedin [Edels-
brunneret al. 2001] andchooseto the follow actuallinesof max-
imal slopeinsteadof following the edgesof ¶ . In particular, we
split trianglesto createnew edgesin thedirectionof the maximal
gradient.

Additionally, we avoid degeneratecaseswherethe interior of
a MS quadrilateralis not connected.This may happeneven when
following steepestascent/descentlinesbecause� is notsmoothand
integral linescanmerge. Figure2(a) shows onesuchcase,where
pathsmerge at junctions andsplit the interior of a MS quadrilat-
eral into two regions. To addressthis problemwe allow a pair of
pathsto join only if they areboth ascendingor descending.Fig-
ure2(b)showshow thisstrategy avoidssplittingMS quadrilaterals.
If two pathsarenot allowed to mergewe split a trianglesuchthat
thestructureof theMS complex is preserved but locally we avoid
thejunction.

minimum maximum stable 1−manifolds unstable 1−manifoldssaddle

(a) (b)

Figure2: MS complex of a piecewise linear function. Sincethe
gradientis not continuousascendinganddescending1-manifolds
cansharesegments. (a) Complex with no restrictionson sharing
segments.The vertically marked region touchesonly onesaddle,
thehorizontallymarkedoneis split into two componentsonly con-
nectedby a 1-manifold.(b) Only 1-manifoldsof thesametypecan
sharesegments.All regionsconsistof a singleconnectedcompo-
nentandtouchbothsaddles.

After all pathshave beencomputed,we partition ¶ into quad-
rangularregionsforming thecellsof theMS complex. Eachquad-
rangleis extractedfrom ¶ with a simpleregion-growing strategy
thatstartsfrom atriangleincidentto asaddleandnever crossesany
1-manifold.

Diagonals and diamonds The central elementof our data
structurefor theMS complex is a (simple)saddleor, equivalently,
thehalvesof theat mostfour quadranglesthat sharethesaddleas
oneof their vertices. To be morespecificaboutthe halvesrecall
that in the smoothcategory eachquadrangleconsistsof integral
linesthatgo from its minimumto its maximum.Any oneof these
integral linescanbechosenasdiagonal to decomposethequadran-
gle into two triangles.Thetrianglessharingagivensaddleform the

diamond centeredat thesaddle.As illustratedin Figure6(a),each
diamondis a quadranglewhoseverticesalternatebetweenminima
andmaximaaroundtheboundary. This includesthepossibilitythat
two verticesarethesameandtheboundaryof thediamondis glued
to itself alongtwo consecutive diagonals.

Robustness We arecareful in definingrobust algorithmsthat
alway produceconsistentresults.Especiallyin degenerateregions,
whereseveralverticesmayhavethesamefunctionvalue,thegreedy
choicesof local steepestascent/descentmaynotwork consistently.
For example,a 1-manifoldcan be lead into a “dead end” or can
forceendlesssplitting of theedgesin thetriangulation.Weaddress
this problemusinga techniquebasedon thesimulation of simplic-
ity [EdelsbrunnerandMücke 1990]. We mark eachedgeof ¶ in
thedirectionof ascendingfunctionvalue. Vertex indicesareused
to breaktieson flat edgessuchthattheresultingdirectedgraphhas
no cycles. Now, the verticesof ¶ canbe treatedas if they were
in generalposition. The searchfor the steepestpath is therefore
transformedto a weighted-graphsearch. When searchingfor an
ascendingpathonly ascendingedgesor triangleswith at leastone
ascendingedgeareconsidered.The functionvaluesareonly used
aspreferenceswhenthey agreewith the edgelabels. In this way,
our algorithmbecomesstableeven for highly degeneratedatasets
astheoneshown in Figure3.

(a) (b)

Figure3: MS complex of degeneratedataset. The “volcano” is
createdby asin() functionthatis flat bothinsidethe“crater” andat
thefoot of themountain.(a) Originally computedMS complex. A
largenumberof critical pointsis createdby eliminatingflat regions
usingsimulationof simplicity. (b) Thesamecomplex afterremoval
of “topologicalnoise.”

We computethedescendingpathsstartingfrom thehighestsad-
dle andtheascendingpathsstartingfrom thelowestsaddle.Thus,
if two pathsaimfor thesameextremum,theonewith higherpersis-
tence(ourmeasureof importance)is computedfirst. Theboundary
of the dataset is artificially taggedasa path. The completealgo-
rithm is shown in Figure4.

4 HIERARCHY

Themainobjective in thispaperis thedesignof ahierarchicaldata
structurethat supportsadaptive coarseningand refinementof the
data. In this section,we first describesucha datastructureand
secondshow how to useit.

Cancellations Weuseonlyoneatomicoperationto simplify the
MS complex of a function, namelya cancellation that eliminates
two critical points. The inverseoperationthat createstwo critical
pointsis referredto asananti-cancellation. In orderto canceltwo
critical points they needto be adjacentin the MS complex. This
leavesonly two possiblecombinations:aminimumanda saddleor
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Í
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computeDescendingPath(P);
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growRegion(f,p0,p1,p2,p3)//pi boundingpaths
createMorseCell(C,p0,p1,p2,3);
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= connectMorseCells(

Ì
) //M containsthefinal MS complex

Figure4: Algorithm usedto createanMS complex.

a saddleanda maximum. The two configurationsaresymmetric,
sowecanlimit ourselvesto discussingto thesecondcase,which is
illustratedin Figure5. Let ¹ bethesaddleand Î themaximumof

Figure5: A portionof thegraphof afunctionbefore(left) andafter
(right) cancelingamaximumanda saddle.

thecanceledpair andlet Ï betheothermaximumconnectedto ¹ .
We require ÏÑÐ®ÀÎ and � � Ï��+ÒÄ� � ÎO� or elseprohibit thecancella-
tion of ¹ and Î . We view thecancellationasmerging threecritical
pointsinto one,namely ¹ ¦ Î ¦ Ï into Ï . Thefour pathsendingat ¹
areremoved andthe remainingpathsendingat Î areextendedtoÏ . Thereasonfor requiring � � Ï���Ò`� � ÎO� shouldbeclear. First, it
impliesthatall pathsremainmonotonic,exceptthepathsextended
from Î to Ï , which will be fixed by numericalmethodsto be ex-
plainedin Section5. Second,wedonot loseany level setsandonly
simplify thelevel setsbetween� � ¹�� and � � ÎO� by mergingthecom-
ponentaroundÎ into thecomponentsurroundingÏ . Wemaythink
of acancellationasdeletingthetwo descendingpathsof ¹ andcon-
tractingthetwo ascendingpathsof ¹ . Alternatively, we maythink
of it asgluing thediagonalsin pairs,thuszippingup thediamond
centeredat thesaddleto a line, asillustratedin Figure7.

Node remo val Webuild themulti-resolutiondatastructurefrom
bottomto top. ThebottomlayerstorestheMS complex of thefunc-
tion � , or ratherthecorrespondingdecompositionof the2-manifold
into diamonds.Figure6(b) illustratesthislayerby showing eachdi-
amondasa nodewith arcsconnectingit to neighboringdiamonds.

Eachnodehasdegreefour, but therecanbe loopsstartingand
endingat thesamenode. A cancellationcorrespondsto removing
a nodeandre-connectingits neighbors.Whenthis nodeis shared
by four differentarcswecanconnecttheneighborsin two different
ways.As illustratedin Figure7, this correspondsto thetwo differ-
entcancellationsmerging thesaddlewith thetwo adjacentmaxima
or the two adjacentminima. Thereis only oneway to remove a
nodesharedby a loopandtwo otherarcs,namelyto deletetheloop
andconnectthetwo neighbors.

(a) (b) (c)

Figure6: (a) The(dotted)portion of a Morse-Smalecomplex and
the (solid) portion of the correspondingdecompositioninto dia-
monds.(b) The(solid)portionof thedatastructurerepresentingthe
(dotted)pieceof thedecompositioninto diamonds.(c) The(solid)
cancellationdagof the(dotted)decompositioninto diamonds.

(a) (c)(b)

(B)(A)

Figure7: A four-sideddiamond(a) canbezippedup in two ways:
from top to bottom(b) or from left to right (c). A three-sideddia-
mond(A) canbezippedup in only oneway (B).

Hierar chy As mentionedearlier, we build a hierarchyfrom the
MS complex by repeatedlycancelingpairsof critical points. For
example,we may usethe algorithmin [Edelsbrunneret al. 2002]
to pairupthecritical pointsas

��Ó ¬ ¦ Î ¬ � ¦ ��Ó ­ ¦ Î ­ � ¦5ÔmÔmÔm¦ ��Ó�Õ ¦ Î Õ � , with
persistenceincreasingfrom left to right. Let ÖL× betheMS complex
obtainedafterthefirst

¨
cancellations,for ¿ ¤V¨;¤ ¼ . Weget Ö ×5Ø ¬

by modifying ÖL× andleaving enoughinformationbehindsowecan
recover Ö+× from ÖL×
Ø ¬ . Thehierarchyis completewhenwe reachÖ Õ .

Call each Ö × a layer in the hierarchyand representit by ac-
tivating its diamondsaswell asneighborandvertex pointersand
de-activatingall otherdiamondsandpointers.To ascendin thehi-
erarchy(coarsenthequadrangulation)we de-activatethediamond
of
Ó ×
Ø ¬ andto descendin thehierarchy(refinethequadrangulation)

we activatethediamondof
Ó ×�Ù ¬ . Bothactivatingandde-activating

adiamondconsistsof updatinga constantnumberof pointers.

Independent cancellations We generalizethe notion of a
layer in the hierarchyto permit view-dependentsimplificationsof
thedata.Thekey concepthereis the interchangeabilityof cancel-
lations.We will seeshortlythatthemostseverelimitation to inter-
changingcancellationsderivesfrom the assignmentof extremaas
verticesof the diamondsandfrom re-drawing the pathsendingat
theseextrema.To understandthis limitation, we introducethecan-
cellation dag (directedacyclic graph)whoseverticesarethe min-
ima andmaxima.Figure6(c) shows anexampleof sucha dag.For
eachdiamondthereis a directededge(a di-edge)from thehigher
to the lower minimum andanotherdi-edgefrom the lower to the
highermaximum.We have no loopsandthereforesometimesonly
onedi-edgein adiamond.Thedi-edgesconnectingthemaximain-



creasein height,andsimilarly thedi-edgesconnectingtheminima
decreasein height. It follows that the cancellationdag is indeed
acyclic. Zipping up a diamondcorrespondsto contractingoneof
its di-edgesanddeletingtheother, if any. Theend-pointof thedi-
edgeremainsasa vertex andthestart-pointdisappears.It follows
that thediamondsthatsharethestart-pointnow receive a new ver-
tex. A specialcaseariseswhena diamondsharesboth,start-and
end-point.Theconnectingdi-edgewould thenturn into a loop and
is thereforedeleted.Wenow comebackto ouroriginalobjectiveof
exploring view-dependentsimplifications. Two cancellationsin a
(possiblyalreadysimplified)MS complex areindependent if there
is no differencebetweenthe datastructuregeneratedby the two
orderingsof the operations.Otherwise,the two cancellationsare
dependent. For examplethetwo cancellationszippingup thesame
diamondaredependentsinceonepre-emptstheother. In general,
two cancellationsaredependentif their diamondssharea vertex.
We choosethis definitionof dependencebecauseof thepathsthat
needto be re-drawn whenever we zip up a diamond. The reason
we areinterestedin independentcancellationsshouldbe obvious:
they offer somefreedomin how we choosea layer in the hierar-
chyandthuspermittheadaptationof therepresentationto external
constraints,suchasthebiasedview of thedata.

Balance The more independentcancellationswe can find the
morefreedomwe have in generatinglayersin themulti-resolution
datastructure.Ideally, we identify a large independentsetandit-
erateto constructa shallow hierarchy. In theworstcase,every pair
of cancellationsis dependent,which contradictstheexistenceof a
shallow hierarchy. As illustratedin Figure 9(b), sucha configu-
ration exists even for the sphereand for any arbitrarynumberof
vertices.The three-sideddiamondsarenecessaryfor constructing
suchexamples.Specifically, we canprove thatevery MS complex
without three-sideddiamondshasa large independentsetof can-
cellations.

5 GEOMETRIC APPROXIMATION

After eachcancellationwe mustcreateor changethe local geom-
etry suchthat it matchesthesimplified topology. Thereexist sev-
eralobjectivesfor thisgeometry:(1) Theapproximationmustagree
with thegiven topology. (2) Theerrorbetweenthesimplifiedand
theoriginalgeometryshouldbesmall.(3) Toachieveavisualpleas-
ing renderingtheapproximationshouldbeassmoothaspossible.

Error bounds For thispartof thealgorithmweuseverticaldis-
tanceof thefunctionvaluesat verticesaserror. Thepersistenceof
acancellationimpliesaminimalerrorbetweenoriginalandsimpli-
fiedgeometry. A one-dimensionalexampleis shown in Figure8(a).
ThepersistenceÚ of themiddlemaximum-minimumpair is defined
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Figure8: Geometryfitting for 1-manifolds:(a) A one-dimensional
cancellationandseveralmonotoneapproximations.(b) Localaver-
agingschemeusedto smooth.Theslopesof theneighboringedges
arecombinedwith the original slope,andthe function valuesare
adjustedaccordingly. (For betterunderstandingtheedge“normals”
areshown.)

by their differencein function value. Ignoring specialcases,it is
easyto seethat any monotoneapproximationhasan error of at
least Ú�é © . The approximationwith minimal changeto the origi-
nal functionvaluesis shown in redin Figure8(a).However, theflat
section,andthefactthatthisapproximationis only

Ìrê
continuous,

will producevisually unpleasingresults. A smootherapproxima-
tion within the sameerror boundis shown in blue. Nevertheless,
without relaxingtheerrorfurthera flat segmentcannotbeavoided.
Oncea largererrorboundthanÚ�é © is usedevensmootherapproxi-
mationsarepossibleasshown in green.It is importantto notethat
onecanalwaysdirectly constructan approximationwith minimal
error. In the two dimensionalcasethesameerrorboundshold but
the approximationwith minimal changesto the functionvaluesis
only

Ì Ù ¬ continuous.

Data fitting Sinceit is guaranteedthatbeyonda certainerrora
monotonesolutionexists to “fill in” the interior geometryof each
quadrilateral,thegoalis to find an“optimal” approximation(based
on somequality measure).A largebodyof literatureexistson the
subjectof constrainedsmoothingsplines[Greiner 1991; Carlson
andFritsch1985].Thegeneralproblemis to constructthesmoothes
interpolantto a setof input datawhile observingsomeshapecon-
straints(e.g., convexity, monotonicity, andboundaryconditions).
However, most publishedwork usesweightederrors rather than
absoluteerror bounds. Additionally, the techniquesare typically
describedfor tensorproductsetting,andthe definitionsof mono-
tonicity for thebivariatecasevary anddiffer from theonewe use.
To adaptthesetechniquesto fit geometryto giventopologywill be
thesubjectof futurework.

We usea multi-stageiterative approachto fit geometry. It pro-
videsa smooth

Ì ¬
-continuousapproximationwithin a givenerror

boundalongpaths. In the interior of regionswe usea Laplacian
smoothing[Taubin1995] with boundaryconstraints,which is not
guaranteedto observe theerrorbound.Thesolutionfor thepathsis
alsobasedon iterative smoothing.Ratherthanaveragingfunction
valuesdirectly, we averagegradients.An exampleis shown in Fig-
ure8(b). Weconsiderasingleedgealongapath:First,wecompute
the gradientalongthe pathfor both neighboringedges.We com-
putea targetgradientby averagingthegradientof thecurrentedge
with thegradientsof theneighboringedges.Secondwe adjustthe
functionvaluesat bothendpointssuchthat the resultingedgehas
thetargetgradient.

Duringthesemodificationsweconstraintheverticesto lie within
theerrorboundandthecompletepathto bemonotone.Addition-
ally, thegradientatcritical pointsis setto zero.Theconstraintsare
includedsuchthat initial configurationsnot subjectto thesecon-
straintsareguaranteedto observe the constraintsafter a sufficient
numberof iterations. Two examplesof this techniqueareshown
in Figure9. Theprocedureperformswell in practice,eventhough
it convergesslowly. The interiorsof regionsaresmoothedusing
standardLaplaciansmoothing[Taubin1995] appliedto the func-
tion values.At eachiteration,the functionvalueat a vertex is re-
placedby theaveragebetweenits old valuesandtheaverageof all
its neighbors.Sincetheboundariesaremonotone,this approachis
guaranteedto convergeto a monotonesolution.

The completeprocesscanbe summarizedas follows: Find all
pathsaffectedby a cancellation;use the one-dimensionalgradi-
entsmoothingto geometricallyremove thecanceledcritical points;
smooththeold regionsuntil they aremonotone;erasethepathsand
re-computenew pathsusingthenew geometry;asnew pathsmight
violate the error bounduseone-dimensionalgradientsmoothing
againto force the new pathsto comply with the constraints;and,
finally, smooththenew regionsuntil all pointsareregular.
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(a) (b)

Figure9: (a) A MS complex on thespherewith ¼ diamondsand ¼
pairwisedependentcancellations.(b) Constrainedone-dimensional
smoothing:Shown in blueareconstraintson endpoint derivatives
and error bounds. (left) Initial configuration;(right) limit curve
subjectto blueconstraintsandmonotonicityrequirements.

6 REMESHING

We must remesheachquadrangleandcreatea consistent(crack-
free) triangulationacrossneighboringquadrangles.Startingfrom
triangulatedfour-side regions with polygonsas boundarycurves,
we createa regular triangulationthat approximatesthe original
function valueswithin a user-definederror bound. The goal is to
createatriangulationwhoseconnectivity is thatof auniformly sub-
divided squareobtainedvia applicationof repeatedlongest-edge
bisection.

Parametrization The initial stage of remeshing creates a
parametrizationfor eachquadrangle.We areusingmeanvalueco-
ordinatesasproposedby Floater[2003] to parametrizeeachquad-
rangleover the unit square. Eachvertex in ¶ is expressedas a
convex sumof its neighbors.The necessaryweightscanbe com-
putedby solvingasparselinearsystem.Wemapthefour boundary
curvesby arc-lengthto the four edgesof the unit square.Givena
parametrizationfor theboundarytheconvex combinationsuniquely
definea parametrizationfor thecompletequadrangle.

Next, we samplethe parameterspaceon a uniform grid using©%ë ½ £ samplesoneachboundarycurve. Wecreateanew meshfor
eachquadrangleby mappingthe samplesback to physicalspace.
The grid resolutionis definedby somegiven error bound. Paths
follow locally themaximalgradientdirection.Therefore,wedefine
theerrorontheboundaryalone.Wesampleeachboundaryuntil the
errorbound(Hausdorff-distance)is met andchoosethegrid reso-
lution to agreewith the maximumof the four boundarypolygons
resolutions.

Avoiding crac ks To avoid additionaldependenciestherender-
ing of eachquadranglemustbeindependentof theneighborquad-
rangles.Theglobal triangulationis crack-freewheneachpolygon
boundingaquadrangle(eachpathof thecomplex) is renderedwith-
outcracks.Therearetwo potentialsourcesof cracksbetweenquad-
rangles.

Neighboringquadranglescould be sampledat different resolu-
tions. Therefore,two neighborquadranglesmight renderthesame
polygonalboundaryusinga differentnumberof samples,creating
t-junctionsin the triangulation. We addressthis problemby first
samplingall pathsuntil they meettheerrorbound.Weforceall ad-
ditional samplesto lie on thelinearinterpolationof its neighboring
samples.This approachensuresthatexisting t-junctionscreateno
visiblephysicalcracks.

The secondsourceof potential cracksare junctions. As de-
scribedin Section3, quadranglescanbegeometricallypartiallyde-
generateasa resultof allowing pathsto sharecommonedges.By
construction,eachjunctionis a cornerof thegeometricalrepresen-
tationof at leastonequadrangle.Eachcorneris renderedindepen-
dentlyof anadaptive renderingscheme(aslong asthequadrangle

is visible). Hence,eachjunction mustalwaysbe rendered.This
fact resultsin two properties:(1) Eachjunction mustbe a sample
pointof thegrid,and(2) whendefiningscreenspaceerrorswemust
ensurethat junctionsarealwaysrendered.Thefirst problemis ad-
dressedby modifying theparametrizationalongpolygons.Rather
thansamplingacompletepathusingits arc-lengthparametrization,
weonly considersegmentsbetweenjunctionsand/orcritical points.
Eachsegmentis sampledusingastandardbisectionprocedure,first
addinga sampleat arc-lengthvalue0.5, thentwo samplesat 0.25
and0.75,etc.,until the error boundis met. Eachboundarycurve
consistsof oneor moresuchsegments.A boundarycurve mustbe
sampledusing

© ë ½ £ samples,andthesamplingof thesegments
mustbeobserved.

Data layout and rendering Ratherthan storing a triangula-
tion for eachquadrangleexplicitly, we useregulargrids. This ap-
proachallows us to usethe methodsdescribedin [Linstrom and
Pascucci2002] for renderingpurposes. By storing eachgrid in
two interleavedembeddedquadtreeswe avoid having to storeany
connectivity information,while maintaininghigh flexibility during
rendering.As describedby LindstromandPascucci[Linstrom and
Pascucci2002],this framework canbeextendedeasilyto adaptive,
view-dependentrendering,aswell asefficientview frustumculling
andgeomorphing.Onedisadvantageof this datalayout is a 33%
memoryoverhead.Additionally, we wastememoryby represent-
ing partialboundaryquadranglesasgeneralquadrangles.Another
importantaspectis thedefinitionof local errorcoefficients. As we
areworking with many smallergrids,ratherthana singlehigh res-
olution one, we must ensureconsistency acrossboundaries.We
ensurethat sampleson grid boundariesareshared.This approach
alsoguaranteesthat their respective error termsagree.Therefore,
a samplealonga pathis eitherrenderedfrom bothadjoiningquad-
ranglesor neitherone. Concerningthe renderingof junctions,we
settheir error termsto infinity. (For a moredetaileddiscussionof
the different error termspossibleand their computationwe refer
to [Linstrom andPascucci2002].)

7 RESULTS

We testedour algorithmon thePugetSoundterraindatasetat res-
olution 1025-by-1025andelevation valuesrepresentedwith two-
byte unsignedintegers. We also usedthe temperaturefield of a
combustionprocesssimulatedat resolution512-by-512with tem-
peraturevaluesrepresentedby single-byteunsignedintegervalues.
All thetestswereperformedona1.8GHzPentium4 Linux PCwith
1Gbof mainmemory.

A straight-forward applicationof our algorithm is the removal
of topologicalnoisewithout smoothingthe data. This functional-
ity is not dependenton thehierarchysincecanbeimplementedby
purerepeatedcancellationof thecritical pointswith lowestpersis-
tence.This noiseremoval stageshouldalwaysbeapplied,even if
thepersistencethresholdis setto zero,to remove at leastthetopol-
ogy introducedby thesymbolicperturbation.Thetop of Figure10
shows the effect of this procedure.The original MS complex (on
the left) with 2859critical pointsis comparedwith anapproxima-
tion (on the right) whereall topologicalfeatureswith persistence
below 0.1% of the temperaturerangewere removed. When it is
not necessaryto modify the functionvalues(fit thegeometry)this
operationcanbeperformedin aboutonesecond.

Severalresolutionsof thePugetSounddatasetareshown at the
middle-bottomof Figure 10. After removal of all topology with
persistencebelow 0.5% of the maximum elevation the approxi-
mationhasonly 4045 critical points of the 49185in the original
topology (too denseto be shown). Thesepoints determinethe
highest-resolutionMS complex (middle-left).Themiddle-rightfig-



Table1: Approximationerrorsandnumberof facesusedfor differentpersistenceandgeometricerrorbounds.

ure shows an approximationwith 2025 critical points and a uni-
form persistenceof about1.2%. Thebottom-leftshows thecoars-
estMS complex at50%persistencewith 289critical points.Onthe
bottom-rightis a view-dependentadaptive refinementbasedon the
purpleview frustum,whichyield anapproximationwith 1070criti-
calpoints.Thefull-resolutiontopologyis preservedinsidethefrus-
tum, while outsideonly the minimal dependenttopologyis main-
tained.Notehow thetopologycandropquickly from thehighestto
thelowestresolutionwhile maintaininga consistentmesh.

The pre-processingof the Puget Sound data set took about
three and a half hours, mainly due to the slow convergenceof
the geometricfitting procedures. The traversal of the hierar-
chy as well as renderingare fully interactive (seeanimationat
http://graphics.cs.ucdavis.edu/ptb/MorseComplexResults).

Table1 shows themeasuredRMS errorsbetweenthegeometric
approximationat several levelsof resolutioncomparedto theorig-
inal datasets. The error measureshave beengeneratedwith the
Metro tool [Cignoni et al. 1998] with disabledvertex samplingas
thet-junctionsin ourmeshesseemedto causenumericalproblems.
Approximationsfor severalpersistenceboundsarecomparedto the
original dataand, for the samepersistence,with several adaptive
meshes.The errorusedfor the meshingprocedureis vertical dis-
tanceat thevertices.

8 CONCLUSIONS

We have describeda new topology-basedmulti-resolutionhierar-
chical datastructurefor functionsover 2-manifoldsand demon-
stratedits use for two-dimensionalheight fields. The hierarchy
allows oneto extract geometryadaptively for a given topological
error. Due to its robustnessin the presenceof topologicalnoise
andwell definedsimplificationprocedures,it is appealingfor appli-
cationsusingtopologicalanalysis,for example,datasegmentation
andfeaturedetectionandtracking. Futurework will beconcerned
with fitting thecompletegeometrywithin a givenerrorboundand
theextensionto volumetricdatasets.
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